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The 2" phase of the

Global Land-Atmosphere Coupling Experiment
Progress Report: December, 2008

Agenda:
-- Go over current progress amongst different groups and here at GLACE-2 Central

-- Discuss recently-found problem with SST boundary data
-- Discussion of schedules, etc.



Updated Participant List

Group/Model # models Points of Contact

1. NASA/GSFC (USA): GMAO seasonal forecast 2 R. Koster, T. Yamada
system (old and new)

2. COLA (USA): COLA GCM, NCAR/CAM 2 P. Dirmeyer, Z. Guo
GCM

3. Princeton (USA): NCEP GCM | E. Wood, L. Luo

4. IACS (Switzerland): ECHAM GCM 1 S. Seneviratne, A. Roesch

5. KNMI (Netherlands): ECMWF 1 B. van den Hurk

6. ECMWF 1 G. Balsamo

7. GFDL (USA): GFDL system 1 T. Gordon

8. U. Gothenburg (Sweden): NCAR 1 J.-H. Jeong

9. CCSR/NIES/FRCGC (Japan): CCSR GCM 1 T. Yamada

10. FSU/COAPS

[

M. Boisserie

12 models



Fcst. Model Points of Contact | Progress to Date

COLA GCM : | Paul Dirmeyer, -- Forcing data interpolated to proper resolution;
NCAR/ Zhichang Guo offline land simulations proceeding.

CAM GCM, -- Completed 10 years of COLA runs

via COLA -- NCAR runs being set up.

Three analyses performed here at GLACE-2 Central on COLA results:
1. Analysis of potential predictability.

2. Analysis of forecast skill.

3. Analysis of forecast skill, using statistical enhancements.




Potential predictability is the maximum predictability possible in the
forecasting system.

STEP 1: For a given ensemble forecast, assume that the first ensemble
member represents “nature”.

STEP 2: Assume that the remaining ensemble members represent the

“forecast”.

4_

3_
Forecasted 2r 0
precipitation 10‘ 1 234567 8 9
anomaly 4L
(mm/day) ol

_3—

4r Ensemble member




Potential predictability is the maximum predictability possible in the
forecasting system.

STEP 1: For a given ensemble forecast, assume that the first ensemble
member represents “nature’.

STEP 2: Assume that the remaining ensemble members represent the
“forecast”.

STEP 3: Determine the degree to which the “forecast” agrees with the
assumed “nature”.

To what extent does this anomaly...
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Anomaly: member 1 (mm/day)

Grid cell in Central U.S.

Regress “forecast”

&= against “observations” to

6] ‘ g
- =039 . ]
B o 7

47 o ® . i
L Y _
L . ° _

27 _
N ® o o000 o .. 2
L [ ] ° o -
B o ..'“ o |

0 ° s o —
: o ©° o % o .
u o o @ :oo ° |
i , ®e i
L ) .. ° _
L ° _

4l °* ]

_67 I I | I I I | I I I | I I I | | | | | 1
6 4 2 0 2 4

Average Anomaly: members 2-10 (mm/day)

»

retrieve 12, our measure
of forecast skill.



Potential predictability is the maximum predictability possible in the
forecasting system.

STEP 1: For a given ensemble forecast, assume that the first ensemble
member represents “nature’.

STEP 2: Assume that the remaining ensemble members represent the
“forecast”.

STEP 3: Determine the degree to which the “forecast” agrees with the
assumed “nature”.

STEP 4: Repeat multiple times, with each ensemble member in turn taken
as “nature”. Average the resulting skill diagnostics.

This analysis effectively determines the degree to which atmospheric chaos

foils the forecast, under the assumptions of “perfect” initialization, “perfect”
validation data, and “perfect” model physics. The potential predictability is

an underlying characteristic of a modeling system that underlies its ability to
perform in any forecast exercise.
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Forecast Skill: COLA model

Notes:

Skill 1s averaged separately for four leads:

a. 1-15 days after forecast start date

b. 16-30 days after forecast start date

c. 31-45 days after forecast start date

d. 46-60 days after forecast start date
For a given forecast start date and lead, the forecasts from the 10 ensemble members
are averaged into a single field.

Skill for a given period is compared to observations during that period. (Measured as
r2.) Analysis focuses on US first, out of convenience: we have access to a high quality
multi-decade observational dataset there (Higgins et al., 2000), and besides, most
models show some coupling strength there (GLACE-1).

Prior to computing the skill scores (observations), all 15-day forecasts are standardized
(using relevant means and standard deviations for given start date and lead), as are all
the observations.
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Forecast Skill: COLA model

Notes (continued):

The skill analysis is supplemented with an analysis of transformed forecasts:

Suppose we can predict
P here with the forecast
system (high potential
predictability)...

...but not here /

4

azm ER 100

Suppose, though, that
P in these two areas
are correlated in the

real world.

Then we can combine the
model forecasts with the
observed correlations to

derive a forecast here.

Using these ideas, we can compute a
“transformation matrix” A that improves a forecast:

X = AX
Vect.or Vector holding
holding iginal
transformed by
forecasts
forecasts

For details, see Koster et al., Monthly Weather
Review, 136, p. 1923-1939.
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Forecast skill (COLA): Precipitation
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Forecast skill (COLA): Precipitation

All start dates (100 standardized values going into r? calculation).
Lead: Days 15-30
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Forecast skill (COLA): Precipitation

AMLJ start dates (60 standardized values going into r? calculation).
Lead: Days 1-15

Raw
Results

Transformed
Results

Series 2:
no land information

—

o T

EEEEl
1

Series 1:
_ | land mformatlon

P okl stxtbimes): Iper =0 Trarsfomed Sor2
T

F'[.ﬁ.l‘l‘l..lst.'l'tm] Ipser =i Tr.'l'EfOﬂTn-CIEDH

5

T

EEEEI
H 1

: G

(colors go from 0. to 0.5)

EEEEI
1

Differences:
impact of land

N

EEEEI
1

Piraef (ohll statimes) . lper =0 dfs
T

: G

N’

TR Er TR Er
“1‘|E|EIE|-E|E|E|Ei[[ “1‘|E|EIE|-E|E|E|Ei[[

(colors go from -0.5 to 0.5)

15



Forecast skill
(COLA):
Temperature

Raw results,
all start dates
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Fcst. Model Points of Contact Progress to Date
NCAR Jee-Hoon Jeong -- Baseline set of simulations for the period
(USA, via 1986-1995 is finished (Series I and Series 2).
U. Gothenburg, -- Performing additional forecasts with modified
Sweden) initialization strategy.

In preparing for this telecon, we found some unusual
aspects of the results that need clearing up — we
need to talk to Jee-Hoon. Currently, the results for
NCAR are indeterminate.
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Fcst Model Points of Contact | Progress to Date

GEOS5 GCM; | Randal Koster, -- Simulated 50 years of land surface conditions

NSIPP GCM Tomohito Yamada | for initialization

(NASA/GSFC) -- Ran GEOSS5 GCM 10 years to generate
climatology

-- July 1 forecasts finished.
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Model: GEOS5
Variable: PRCP
Start date: July 1

(potential predictability)
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Fcst. Model | Points of Contact

Progress to Date

KNMI | Bart van den Hurk,
Helio Camargo,

Gianpaolo Balsamo

-- GSWP2 forcings regridded to their GCM’s
resolution.

-- 10-yr climatology run with the GCM, to allow for
soil moisture scaling.

-- Land model incorporated into LIS, for efficient
offline simulation.

-- 1+ years of Series 1 forecasts, 1 set of Series 2
forecasts. (Forecasts are ongoing.)

First results showing
forecasted soil moisture’s
agreement with “truth”
across the globe:

-- decrease of agreement
with time

-- agreement differs
amongst ensemble
members.

-- longer apparent
memory in mid-summer

Anomaly Comrelation Coeflicient [-]

Spatial soil moisture correlation global data GSWP - IFS suite
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Fcest Model Points of Contact | Progress to Date

GFDL (USA) Tony Gordon -- AMIP style control run performed for
atmospheric initial conditions and for scaling of
land variables.

-- 10 years (1% of each of month, 10 ensemble
members) completed, for both Series 1 and
Series 2.

-- All Series 1 runs done; scaled and unscaled;
Series 2 done two ways: with pdf, and with
average.
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Fcst Model

Points of Contact

Progress to Date

NCEP (via
Princeton, USA)

Eric Wood,
Lifeng Luo

-- Simulated 50 years of land surface conditions
for 1nitialization.

-- Ready to go; waiting for time on NCEP
machine.

ECHAM (via Sonia Seneviratne, | -- Series 2 simulations for GSWP2 period are
IACS, Roesch Andreas finished for most start dates in 10-year period.
Switzerland)
ECMWEF Gianpaulo

Balsamo
CCSR/NIES/ Tomohito Yamada | -- Simulated 50 years of land surface conditions
FRCGC (Japan) for initialization.
FSU/COAPS Marie Boisserie (New to project)
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Discovered: Problem with GLACE2 SST data
(Thanks to Tony Gordon for spotting this.)

Original data: Hadley monthly mean state
Two types of data

1. start date: 15t (interpolated by two months, e.g.,
(March+April)/2=April 1st)

2. start date: 15t (directly from Hadley monthly mean sate at a same
month)
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Main point: Somehow, the SST data meant to
refer to March 1 actually refers to observations
on April 1.

The problem only applies to start dates on the
first of the month. SST data for start dates on
the 15 of the month are not in error.

New SST datasets are being constructed now.
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